ACDSforo
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.


Este foro esta hecho para fines educativos y para orientar a los usuarios. Se les pide que tengan buen uso del manejo de este foro.
 
ÍndiceÍndice  Últimas imágenesÚltimas imágenes  BuscarBuscar  RegistrarseRegistrarse  ConectarseConectarse  

 

 Integración del metabolismo (primera parte)

Ir abajo 
AutorMensaje
ACDS
Admin
ACDS


Mensajes : 25
Fecha de inscripción : 12/06/2009

Integración del metabolismo (primera parte) Empty
MensajeTema: Integración del metabolismo (primera parte)   Integración del metabolismo (primera parte) Icon_minitimeVie Jun 12, 2009 1:38 pm

Aqui les dejo algo muy importante con relacion al metabolismo. Espero lo disfruten.

[b]Estrategia del metabolismo: Recapitulación
Mecanismos frecuentes en la regulación metabólica
Principales vías metabólicas y centros de control
Conexiones claves: Glucosa-6-fosfato, Piruvato y Acetil-CoA
Perfiles metabólicos de los órganos más importantes
Estrategia del metabolismo: Recapitulación[/b]


La estrategia básica del metabolismo es formar ATP, poder reductor y precursores para la biosíntesis. Revisemos brevemente estos temas centrales:

El ATP es la unidad biológica universal de energía. El elevado potencial para transferir grupos fosforilos capacita al ATP para ser utilizado como fuente de energía en la contracción muscular, transporte activo, amplificación de señales y biosíntesis.

El ATP se genera en la oxidación de moléculas combustibles, como glucosa, ácidos grasos y aminoácidos. El intermediario común en la mayoría de estas oxidaciones es el acetil-CoA. Los carbonos del fragmento acetilo se oxidan completamente a CO2 en el ciclo del ácido cítrico, con formación simultánea de NADH y FADH2, que transfieren sus electrones de elevado potencial a la cadena respiratoria, con formación final de ATP. La glucólisis es otro proceso generador de ATP, pero la cantidad que se forma es mucho menor que en la fosforilación oxidativa (2 vrs. 30 0 32 ATP‘s). Sin embargo, la glucólisis puede transcurrir rápidamente durante un corto tiempo en condiciones anaeróbicas, mientras que la fosforilación oxidativa requiere del suministro continuado de O2.

El NADPH es el principal dador de electrones en las biosíntesis reductoras. En la mayoría de la biosíntesis, los productos finales están más reducidos que sus precursores, y por ello, requieren, además de ATP, un poder reductor, los cuales proceden normalmente del NADPH. La vía de las pentosas fosfato suministra gran parte del NADPH que se necesita.

Las biomoléculas se construyen a partir de una serie relativamente pequeña de precursores. Las variadas moléculas de los seres vivos se sintetizan a partir de un número mucho menor de precursores. Por ej.: la dihidroxiacetona fosfato formada en la glucólisis proporciona el esqueleto central de glicerol de fosfatidato (fosfolípidos y triacilglicéridos); fosfoenolpiruvato, otro intermediario de la glucólisis, suministra parte del esqueleto carbonado de los a.a. aromáticos; el acetil-CoA proporciona fragmentos dicarbonados para una amplia gama de biosíntesis; el succinil-CoA, formado en el ciclo del ácido cítrico, es uno de los precursores de las porfirinas; la ribosa-5-fosfato, formada junto con el NADPH en la vía de las pentosas fosfato, es la fuente del azúcar de los nucleótidos.

Las vías biosintéticas y degradativas son casi siempre diferentes. Por ej. la vía de síntesis de ácidos grasos es diferente de la de su degradación. Esta separación posibilita que las vías biosintéticas y degradativas sean termodinámicamente favorables en todo momento; esta separación contribuye, además, en gran manera a la efectividad del control metabólico.

Mecanismos frecuentes en la regulación metabólica

La compleja red de reacciones en la célula está regulada y coordinada con precisión. El metabolismo puede controlarse de varias maneras:

Interacciones alostéricas. El flujo de moléculas en la mayoría de las vías metabólicas viene determinado fundamentalmente por las cantidades y actividades de ciertas enzimas; los puntos de control son generalmente reacciones esencialmente irreversibles. La primera reacción irreversible de una vía (etapa limitante) es normalmente un importante elemento de control. Las enzimas que catalizan etapas limitantes están reguladas alostéricamente, como por ej. La PFK de la glucólisis

Modificación covalente. Muchas enzimas reguladoras, además del control alostérico, están controlados por modificación covalente. Por ej. la actividad de la glucógeno fosforilasa aumenta mediante la fosforilación de la enzima, mientras que la glucógeno sintasa ocurre lo contrario. Estas modificaciones covalentes están catalizadas por enzimas específicas.

Niveles enzimáticos. Las cantidades de enzimas, al igual que sus actividades están controladas. Las velocidades de síntesis y de degradación de algunas anzimas reguladoras están sometidas a control hormonal.

Compartimentación. La pauta metabólica de las células eucarióticas está considerablemente afectada por la existencia de compartimientos. La glucólisis, la vía de las pentosas fosfato y la síntesis de ácidos grasos tienen lugar en el citosol, mientras que la oxidación de ácidos grasos, ciclo del ácido cítrico y la fosforilación oxidativa se realizan en la mitocondria. Algunos procesos, como la gluconeogénesis y la síntesis de la urea, dependen de un juego de reacciones que transcurren en ambos compartimientos (fig. ).El destino de determinadas moléculas dependen de si están en el citosol o en la mitocondria. Por ej., los ácidos grasos transportados al interior de la mitocondria se degradan rápidamente, a diferencia de los ácidos grasos del citosol, que son esterificados o excretados.

Especializaciones metabólicas de los órganos. La regulación en eucariotes superiores está profundamente afectada y favorecida por la existencia de órganos con funciones metabólicas distintas, cuyas interacciones estudiaremos más adelante.

Principales vías metabólicas y centros de control

Recordaremos el papel de las principales vías del metabolismo y sus centros de control.

Glucólisis. Secuencia de reacciones del citosol que transforma la glucosa en 2 moléculas de piruvato, con la generación simultánea de 2 ATPs y 2 NADHs. El NAD+ debe regenerarse para que la glucólisis pueda continuar. En condiciones anaeróbicas, como las que se dan en el músculo esquelético muy activo, esto se logra reduciendo el piruvato a lactato; en cambio en condiciones aeróbicas, el NAD+ se regenera por transferencia de electrones del NADH al O2 a través de la cadena respiratoria. La velocidad de transformación de la glucosa en piruvato está regulada : la fosfofructoquinasa, que cataliza la etapa limitante de la glucólisis, es el centro de control más importante (fig. ). Un nivel elevado de ATP inhibe la PFK, que también es inhibida por el citrato, y se revierte por el AMP. En el hígado el regulador más importante de la actividad de la PFK es la fructosa-2,6-bifosfato. Cuando la glucemia es baja, una cascada de reacciones desencadenadas por el glucagón, conduce a una disminución en los niveles de fructosa-2,6-bifosfato, provocando la desactivación de la PFK, y por tanto, frenando la glucólisis. En el músculo, la PFK se controla de manera diferente. La adrenalina estimula la glucólisis en el músculo, pero la inhibe en el hígado. El incremento en la glucogenolisis hepática, inducida por adrenalina, sirve para suministrar glucosa al músculo, que la consume rápidamente para generar ATP, para su actividad contráctil.

Ciclo del ácido cítrico. La vía final común para la oxidación de las moléculas combustibles –carbohidratos, aminoácidos y ácidos grasos- tiene lugar en el interior de la mitocondria. La mayoría de los combustibles entran en el ciclo en forma de acetil-CoA. La oxidación completa de una unidad de acetilo genera 1 GTP, 3 NADH y 1 FADH2. Estos cuatro pares de electrones se transfieren al O2 a través de la cadena de transporte de electrones, de lo que resulta la formación de un gradiente de protones responsable de la síntesis de 9 ATP. La abundancia de ATP también disminuye la actividad de 3 enzimas del ciclo: citrato sintasa, isocitrato deshidrogenasa y  -cetoglutarato deshidrogenasa. El ciclo del ácido cítrico también tiene una función anabólica, suministrando intermediarios para la biosíntesis, tales como el succinil-CoA, origen de las porfirinas.

Vía de las pentosas fosfato. Estas reacciones que ocurren en el citosol cumple con 2 funciones: genera NADPH para las biosíntesis reductoras y ribosa-5-fosfato para la síntesis de nucleótidos. En la conversión de la glucosa-6-fosfato en ribosa-5-fosfato se generan 2 NADPH. El grupo fosforilo de más del NADPH lo distingue del NADH. Esta diferencia permite que coexistan en el mismo compartimiento una relación elevada NADPH/ NADP+ y otra relación elevada NAD+/NADH. Como consecuencia, pueden transcurrir, simultáneamente y a gran velocidad, la glucólisis y la biosíntesis reductora.

Gluconeogénesis. La glucosa puede sintetizarse, en hígado y riñón, a partir de precursores no glucídicos como lactato, glicerol y aminoácidos. El principal punto de entrada en esta vía es el piruvato que, en la mitocondria, se carboxila a oxalacetato. En el citosol, el oxalacetato se decarboxila y fosforila para formar fosfoenolpiruvato. La gluconeogénesis y la glucólisis están normalmente reguladas en forma recíproca, de modo que una de las vías está detenida cuando la otra es muy activa. Por ej., el AMP inhibe y el citrato activa la fructosa-1,6-bifosfatasa, una enzima clave de la gluconeogénesis (fig. ), mientras que las moléculas tienen efectos opuestos sobre la PFK, enzima regulador de la glucolisis. La fructosa-2,6-bifosfato también coordina estos procesos porque inhibe a la fructosa-1,6-bifosfatasa. Así pues, cuando la glucosa abunda, el nivel elevado, el nivel elevado de F-2,6-BP inhibe la gluconeogénesis y activa la glucólisis.

Síntesis y degradación del glucógeno. El intermediario activado de su síntesis es la UDP-glucosa, que se forma a partir de glucosa-1-fosfato y UTP. La glucógeno sintasa cataliza la transferencia de glucosa desde la UDP-glucosa al hidroxilo terminal de una cadena en crecimiento. El glucógeno se degrada por una vía diferente. La glucógeno fosforilasa cataliza la escisión del glucógeno formando glucosa-1-fosfato. La síntesis y degradación del glucógeno están controladas coordinadamente por una cascada amplificadora disparada por hormonas, de modo que la sintasa es inactiva cuando la fosforilasa es activa y viceversa.. Estas enzimas están controladas por fosforilación y por interacciones alostéricas no covalentes.

La síntesis y degradación de los ácidos grasos. Los ácidos grasos se sintetizan en el citosol por adición de fragmentos dicarbonados a una cadena creciente anclada en una proteína portadora de acilos. El intermediario activado, malonil-CoA, se forma por carboxilación de acetil-CoA. Los grupos acetilo son transportados de la mitocondria al citosol mediante la lanzadera citrato-malato. En el citosol, el citrato estimula la acetil-CoA carboxilasa, la enzima que que cataliza la etapa limitante (fig. ). Cuando abunda el ATP y el acetil-CoA, el nivel de citrato aumenta, y ello acelera la velocidad de síntesis de ácidos grasos. Los ácidos graso se degradan siguiendo una vía diferente y en un compartimiento distinto ( -oxidación mitocondrial). Si el suministro de oxalacetato es suficiente, el acetil-CoA entra en el ciclo del ácido cítrico; en caso contrario, el acetil-CoA puede convertirse en cuerpos cetónicos. El FADH2 y el NADH, formados en la vía de la  -oxidación, transfieren sus electrones al O2 a través de la cadena respiratoria.
Volver arriba Ir abajo
https://acdsforo.board-directory.net
 
Integración del metabolismo (primera parte)
Volver arriba 
Página 1 de 1.
 Temas similares
-
» Integracion del metabolismo (segunda parte)
» Los Riñones y su Funcionamiento (Primera parte)
» Los Riñones y su Funcionamiento (Tercera parte)
» Los Riñones y su Funcionamiento (Cuarta parte)
» Los Riñones y su Funcionamiento (Segunda parte)

Permisos de este foro:No puedes responder a temas en este foro.
ACDSforo :: Farmacia :: Farmacia-
Cambiar a: